
1218 

USE OF GIBBS EQUATION IN IRREVERSIBLE THERMODYNAMICS. ll.* 

CALORIC EQUATIONS FOR COMPONENTS AND PARTIAL PRESSURE 

LSAMOHYL 

Department of Physical Chemistry, 
Institute of Chemical Technology, Prague 6 

Received March 16th, 1971 

For a nonequilibrium, multicomponent and isotropic continuum, the Gibbs caloric equation 
for mixtures is expressed with the aid of caloric equations for components and the partial pressure 
is defined and discussed. Previous definitions of caloric equations for components are shown 
to be not sufficiently general, while Truesdell's and Bowen's definition of partial pressure is in ac­
cord with that in the present work in the special case of caloric equations for components. Even 
in the general case the total pressure can be expressed as a sum of partial pressures defined in the 
present work. Bowen's definition of an ideal solution is generally not identical with that in clas­
sical thermodynamics. 

The principle of local equilibrium of a nonequilibrium continuum was formulated in the preceding 
communication 1 as a postulation of the Gibbs caloric equation for mixtures in specific variables. 
This postulate enabled to define the thermodynamic pressure, chemical potential, some other 
specific quantities of mixtures and partial specific quantities among which the same relations 
apply as among analogously named quantities in classical thermodynamics (e.g. Gibbs-Duhem 
equations). In the special case of a homogeneous system, these quantities become identical with the 
classical ones. 

In the present work, the Gibbs caloric equation for mixtures is expressed with the aid of calo­
ric equations for components (equations for partial specific internal energies), the partial specific 
volume is expressed simply in terms of these equations, and the partial pressure is defined. 

The thermodynamics of mixtures after Truesdell and Toupin 2 and Kelly3 is based on postula­
tion of the caloric equations for components in a form which is not the most general one as will be 
shown below. The partial pressures defined by Truesde1l2 (in § 255) and Bowen4 are for simplified 
caloric equations for mixtures identical with the definition given in the present work. In contrast 
to Bowen4

, we show that even in the general case the total pressure can be expressed as a sum 
of partial pressures defined in the present work. Bowen's definition4 of an ideal solution, however, 
is not identical with that in classical chemical thermodynamics8 (chapter VII in ref. 5 ) . 

Equations in the preceding communication l are referred to in further text by their number 
preceded by I, e.g. (1-32). 

Caloric Equations/or Components and Partial Pressure 

We shall express the partial specific internal energies U j as functions of partial speci­
fic entropies, S l through Sn, and densities of components, Q1 through Qn. By dif-
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Use of Gibbs Equation in Irreversible Thermodynamics. II. 1219 

ferentiating the definitoric Eq. (1-32), introducing the differential dll j in variables 
T, P, WI through wn ._ 1 and using (1-29) and (1-30) we obtain 

dU j = Tds i - P dV j + L ~ dwk , i = 1 to n. n-l(o ) 
k=1 oWk T ,P,wk 

It as apparent from the definition (1-3), (1-5), (1-7), (1-10) and (1-30) that 

= Vj(S, el' '" en) and hence 

dVi = (OVi) ds + ± (OVi) dek; i, j = 1 to n. 
os pj k= 1 Oek s,pk 

(1) 

Vj = 

(2) 

Let us assume now that T, P and the derivatives in Eqs (1) and (2) are known. We 
introduce the differential of Eq. (1-34) into (2) and the result into (1), where we replace 

n n 

the summation by L L (olldOWjh,p,wj(jjl dw
" 

where the Kronecker symbol (jjl is 
1=1 j =1 

equal to 1 for j = I and otherwise equal to zero. Thus, 

+ L L ~ (jkl dw, ; n n-l (OIL') 
1=1 k = 1 OWk T,P,wk 

i, j = 1 to n. 

Eqs (1-5) and (1-7) give by differentiating 

n 

dWk = e- 1 dek - e- 2 {h L del; k = 1 to n. 
1=1 

Eq. (4) introduced into (3) gives after rearrangement 

where 

n n 

dU j = L 9jk dSk + L qjJdel, i = 1 to n, 
k=1 1=1 

9 jk == T(jik - p(OVi) Wk , i,j,k = 1 to n, 
os Pj 

(3) 

(4) 

(5) 

(6) 

(7) 

The quantities 9 ik and qil can be hence determined from thermodynamic properties 

of the mixture. 
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1220 Samohyl: 

We now shall express the Gibbs caloric equation for mixtures (1-2) in terms of 9 ik 
and qil (reU, §255). Eqs (5) introduced into the differential ofEq. (1-37) give 

n n n n n 

du = L L 9ikWi dSk + L L wjqil del + LUi dWj . 
i=lk = 1 i = II=1 ;=1 

We define 
n 

ql == L wiqil ; 1 = 1 to n. 
i=1 

The following expression follows from Eq. (6) 

since 

L Wi9ik = TWk' k = 1 to n, 
i=1 

L w;(ovdos)P! = 0, j = 1 to n, 
i = 1 

(8) 

(9) 

(10) 

(11) 

as follows by differentiation of (I-35) with respect to s at constant Ql through Qn 
with due account to Eqs (1-5) to (1-7). Introducing Eqs (9) and (10) into (8) we obtain 

n n 

du = TL Wk dS k + L ql dQI + L U, dWi . (12) 
k=1 1=1 i=1 

Here we substitute the differential of Eq. (1-34) and use (1-32): 
n n 

du = Tds + Lq1del + LiidWi ' (13) 
1=1 i = I 

Now we use Eqs (4) and (1-36) to obtain after rearrangement 

n 

du = Tds + L [qt + Q-l(Jt - i)] dQI, ( 14) 
1= 1 

the Gibbs caloric equation for mixtures, (1-2), where the quantities r l are given 
by 

(15) 

This in combination with the definition of the thermodynamic pressure P , (1-10), 
and Eqs (1-7), (1-8), (1-36) gives after rearrang~ment 

n 

P = e LQiqi' (16) 
; = 1 

On introducing Eq. (I5) into the definition of chemical potential fli (1-11) we obtain 

(17) 
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Use of Gibbs Equation in Irreversible Thermodynamics. II. 1221 

By comparing this with (1-31) we obtain 

PVi = (Jqi' i = 1 to n, (18) 

which combined with Eq. (16) gives a simple expression for the partial specific vo­
lume Vi: 

Vi = qJ L Ihqk, i = 1 to n. (19) 
k=1 

The partial pressure Pi of i-th component can be defined as 

(20) 

With respect to Eqs (1-6), (1-7) and (1-35) it follows that 

n 

P = LPi , (21) 
i=1 

That the quantity P j has the same physical meaning as partial pressure is obvious 
from the following (ref. 2

, § 215, and 6
) . As follows from Eq. (1-35) multiplied by (J 

and combined with (1-6) and (1-7), (JjV j can be considered as a fraction of volume 
occupied by the i-th component in a given place at a given time. Hence, (JjVi can be 
also considered as a fraction of surface passing through a given place at a given time, 
occupied by the i-th component. The partial pressure Pj' as defined by Eq. (20), is 
therefore just that part of the total pressure P which acts only on the i-th component 
through the considered surface element. It should be noted that in a mixture of ideal 
gases the term (2iVj represents molar fraction, and Eqs (20) and (21) express the Dalton 
law. The partial pressure P j can be also expressed with the aid of Eqs (16) and (19) as 

(22) 

Comparison with Results of Ocher Authors and Discussion 

For a multicomponent mixture, Truesde1l2 in § 254 and 255 postulates a priori 

the existence of partial specific quantities and the form of caloric equations for com­
ponents. Their consequence is the caloric (Gibbs) equation for mixtures. 

It can be assumed that our specific quantities1 of mixtures (y) are identical with 
those introduced by TruesdeII2 (the same applies for (2 and (2i); however, we failed 
to prove that our partial specific quantities (Yj) are identical with those defined 

a priori by TruesdeIl2. The property y = L WiYi' characteristic for both kinds of these 
i = 1 

partial quantities, is necessary for their identity but not sufficient since the partial 
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1222 Samohyl: 

quantities are in both cases generally functions of WI through Wn _ 1 . A sufficient 
condition would be the validity of Eqs (1-45) or Gibbs-Duhem equations (1-48), 
which, however, is not assumed by Truesdel12

• 

For the same reasons, the derivation of partial pressure Pi in ref.?, Eqs (85)-(87), 
is incorrect since in the homogeneous case the intensive quantities are homogeneous 
functions of zero order with respect to component masses (and not independent 
of them as assumed?). 

If we assumed that our partial specific quantities Yi are identical with Truesdell's 
then the caloric equations for components2

,3, 

(23) 

are not the most general ones. Indeed, by comparison with our Eqs (5) and (6) 
it follows that Eq. (23) holds if 

(avdas)PJ = 0, i, j = 1 to n, 

and, in accord with TruesdelF, § 254, 

(24) 

(25) 

According to Eq. (2) Vi is also function of s, V, WI through Wn _ 1 and, of course, also 
of T, P, Wt through Wn _ 1 so that 

(av.) (av.) (av.) (aT) (av.) (ap) a: P J = t V, Wk = a; P,Wk --;;; v.Wk + a; T,Wk --;;; V,Wk 

(26) 

for i, j = 1 to n, k = 1 to n - 1. On multiplying this by Wi and adding for i = 1 
to n we obtain with respect to Eqs (11), (1-8) and (1-35) 

(~) (aT) + (~) (ap)·· = 0 k = 1 to n = 1. (27) aT P , Wk as V,W k ap T , Wk as V,Wk ' 

If we define specific heat at constant volume and composition as 

c == (au/aT)v,wk' k = 1 to n - 1, (28) 

we can write with respect to Eq. (1-15) 

(aT/as)v,wk = T/c, k = 1 to n - 1 . (29) 

On introducing Eqs (27) and (29) into (26) and rearranging we obtain 

(avi) T[(avi) (av) (avi) (av) ] I (av) (30) 
--;;; PJ = aT P,Wk ap T , Wk - ap T,Wk aT P,Wk c ap T , Wk 
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Use of Gibbs Equation in Irreversible Thermodynamics. II. 1223 

fOf i, j = 1 to n, k = 1 to n - 1, so that at usual conditions (c =l= 0, (avjaPh,wk =l= 0) 
Eqs (24) are equivalent to 

(avi) (~) _ (avi) (~) _ 0 
aT P,Wk ap T,wk ap T,wk aT P,Wk 

(31) 

for i = 1 to n, k = 1 to n - 1. On subtracting Eqs (31) for j-th and n-th component 
and using Eq. (1-40) we obtain the condition (31) (hence (24)) in the form 

(~) (~) - (~) (~) = 0 ap T,w) aTaw j P,wj aT P,Wj ap aW j T,wj 

(32) 

for j = 1 to n - 1. From this it follows that 

(33) 

for j = 1 to n = 1. This means that if Eq. (23) (hence (24)) holds in the general case, 
the function (apjaT)v,wJ must be always independent of composition (at given tem­
perature and pressure), which is certainly not true in general; e.g. for a binary mixture 
the mentioned function should be the same even for its pure components. Hence, 
Eq. (24) is generally invalid and the caloric equations for components (23) do not 
represent the general case. 

The general caloric equation for a component can have the form Ui = U i (S1'" 'Sn' 

Ql' .•• Qn) used for the first time in the present work (Eq. (5)). 
We shall compare now our definition of the partial pressure with similar equations 

derived by Truesdell and Toupin2
, § 255, for their caloric equations of components 

(23). From the comparison of Eqs (5), (6) and (9) (with the use of the condition (24)) 
with equivalent equations in ref.2 (Eqs (255.6), (255.9)1' (255.5); the partial volume 
is defined differently by (255.5)1) it follows that Truesdell's Eq. (255.12)1 is identical 
with our Eq. (16). 

For a still more special case of the caloric equation (reU, Eq. (255.13)) 

(34) 

our partial pressure Pi is (as follows from Eqs (5), (9) and (22)) given as 

(35) 

so that it is in this special case identical with that defined by TruesdelJ2, Eq. (255.14)1' 
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1224 Samohyl: 

Bowen4 attempted in a complicated manner to circumvent the idea of partial 
pressure and ascertained that in the general case the partial pressure is meaningless. 
His result for the total pressure in a mixture of fluids (ref. 4

, Eq. (9 .13)z) is in our 
notation 

P = -e.f ~ (oflo~) 
,=1 ei ei T,p' 

(36) 

provided that our total pressure, densities and specific free energy are identical with his 
quantities (ref. 4

, Eqs (9.11), (9.14), (4.12) and (2.20)). However, we shall show that 
this equation is equivalent to (21), i.e., that the total pressure P can be expressed 
as a sum of partial pressures if these are defined by Eq. (20). 

The summand in Eq. (36) can be rearranged with the aid ofEq. (I-5) as 

for i = 1 to n. By the Legendre transformation (I-I2) with the aid of the free energy 
density (obtained by multiplying (1-9) by the density e) we obtain 

n 

d(ef) = -(es) dT + L:!Ii dei (38) 
i=1 

so that the chemi'cal potential !Ii can be also written as 

[o(ef)/Oe;]T,pi = !Ii' i = 1 to n. (39) 

Introducing this result into Eq. (37) and using (17) and (22) we obtain 

- R (of / O .!) = Pi + ei(ji - f), i = 1 to n . 
ei ei T,p! 

(40) 

If this expression is introduced into Eq. (36) and Eqs (I-5), (1-7) and (1-36) are ac­
counted for, Eq. (21) is indeed the result. Contrary to Bowen4

, even in the general 
case in a mixture of fluids the total thermodynamic pressure P can be expressed 
as a sum of the quantities Pi defined by Eq. (20), to which, as was shown in the discus­
sion of this equation, the physical meaning of partial pressures can be assigned. 

For an ideal solution (in a mixture of fluids) defined by Bowen the partial free 
energy depends, besides temperature, only on the density of the envisaged component 
(and not on the densities of other components) (ref.\ Eq. (8.6)): 

(41) 
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Use of Gibbs Equation in Irreversible Thermodynamics. II. 1225 

Eq. (39) with (I-7) and (I-36) gives 

Jli = (aeJJaeih = - -.!. (afi/a -.!.) + fi' i = 1 to n, (42) 
ei Qi T 

which by comparison with (17) and (22) gives 

(43) 

Here the differential quotient is identical with the partial pressure defined for the 
mentioned ideal solution by Bowen4, Eq . (8.11) for mixture of fluids, hence this 
partial pressure is in our case identical with the quantity Pi defined by Eq. (20). 
Again, for the same reason as in the discussion of Truesdell's partial quantities at the 
beginning of this chapter, we assume that also our partial specific quantities U i , Si 

and fi are identical with the a priori defined analogous quantities in ref.4, Eqs 
(2.20), (3.2) and (4.12). Our chemical potential Jli' Eq. (1-11), is identical with that 
defined by Bowen4 since his Eq. (9.13)1 is identical with our (39). 

Finally, it should be noted that Bowen's definitions of an ideal mixture, Eq. (8.3)4 
for a mixture of fluids 

fi = NT, Qi)' Si = si(T, Qi) , 

Jli = Pi(T, QJ ' i = 1 to n 

(44), (45) 

(46) 

(other definitions (8.3) in ref.4 are not important here) are generally not identical 
with the usual definition of an ideal solution in classical chemical thermodynamics 8 

(ref. 5, chapter VIII). This definition involves the assumption that the molar chemical 
potential of component i, Pi' depends at constant T and P only on the molar fraction 
of ;-th component, Xi' so that 

Jli = Pi(T, P, xi)!Mi , ; = 1 to n. (47) 

Hence (ref. 5, chapter VB, § 3) 

(48), (49) 

for i = 1 to n, and the partial molar volume, enthalpy and internal energy are in gene­
ral independent of composition at constant T and P. (Mi denotes relative molecular 
mass, Si and Fi partial molar entropy and free energy of i-th component.) Further, 
Eqs (1-6), (I-7) and (1-35) give 

Qi = xiMJIxkVk , ; = 1 to 11 , (50) 
k=l 
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1226 . Samohyl 

where Vk = Mkv" means partial molar volume of k-th component. It is seen that for 
a classical ideal mixture characterized by Eq. (47) the values of Pi' Ii and Si according 
to Eqs (47)-(49) remain constant at constant T, P, Xi and changing X k (k =1= n. 
However, according to Bowen's definitions (44) - (46) these partial quantities can 
change since Qi according to Eq. (50) is a function of Xl throughxn which are assumed 
to change (Xi and Vk = Vk(T, P) are constant; we assume that Vk values are generally 
not equal and It > 2). Hence, the mentioned definitions of an ideai mixture are 
generally not identical. 

The definition of an ideal mixture introduced by Lewis8 into chemical thermo­
dynamics is bound to molar quantities. Therefore it cannot be expressed in terms 
of specific quantities without introducing relative molecular masses. 

The author is indebted do Drs J. Landa, J. P. Novak and A. Malfievsky for helpful criticism and 
discllssions. 

LIST OF SYMBOLS 

spec. heat at const. volume and composition 1\ partial molar volume 
Pi partial molar free energy Xi molar fraction 
Mi relative molecular mass of i-th component 0ik Kronecker symbol 
Pi partial pressure of i-th component Sik parameter defined by Eq. (6) 
qi parameter defined by Eq. (9) /Li molar chemical potential 
qil parameter defined by Eq. (7) Other symbols are the same as in Part I. 
'Si partial molar entropy 
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